

Welcome to ceedub’s documentation!

Contents:

	ceedub
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2017-09-19)

	0.0.0 (2017-09-18)

Indices and tables

	Index

	Module Index

	Search Page

ceedub

[image: py27] [image: py35] [image: py36]

[image: PyPI status]
 [https://pypi.python.org/pypi/ceedub][image: Build Status]
 [https://travis-ci.org/paulthebaker/ceedub][image: Documentation Status]
 [https://ceedub.readthedocs.io/en/latest/?badge=latest][image: Developement Tool Updates]
 [https://pyup.io/repos/github/paulthebaker/ceedub/]An awesome, simple, and easy to use continuous wavelet transform package for python!

	Free software: MIT license

	Documentation: https://ceedub.readthedocs.io.

To install the latest stable release v0.1.0 -- alpha from PyPI run:

pip install ceedub

To install the most current version with pip directly from github run:

pip install git+https://github.com/paulthebaker/ceedub@master

Features

	continuous wavelet transforms (forward and inverse) in python

	arbitrary user defined wavelet basis functions (provides Morlet-Gabor and Paul wavelets)

	follows the conventions of Torrence and Compo [T&C1998]_.

Credits

Copyright (c) 2017 Paul T. Baker

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install the ceedub, run this command in your terminal:

$ pip install ceedub

This is the preferred method to install ceedub, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for ceedub can be downloaded from the Github repo [https://github.com/paulthebaker/ceedub].

You can either clone the public repository:

$ git clone git://github.com/paulthebaker/ceedub

Or download the tarball [https://github.com/paulthebaker/ceedub/tarball/master]:

$ curl -OL https://github.com/paulthebaker/ceedub/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use ceedub in a project:

import ceedub

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/paulthebaker/ceedub/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

ceedub could always use more documentation, whether as part of the
official ceedub docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/paulthebaker/ceedub/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up ceedub for local development.

	Fork the ceedub repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/ceedub.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv ceedub
$ cd ceedub/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox. These are implemented in the Makefile:

$ make lint
$ make docs
$ make test

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.5 and 3.6. Check
https://travis-ci.org/paulthebaker/ceedub/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_ceedub

Credits

Development Lead

	Paul T. Baker <paultbaker@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2017-09-19)

	First release on PyPI.

0.0.0 (2017-09-18)

	initial release

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 ceedub	

 	
 	
 ceedub.wavelet	

Index

 C
 | D
 | E
 | F
 | I
 | M
 | N
 | P
 | S
 | T
 | W

C

 	
 	ceedub (module)

 	ceedub.wavelet (module)

 	
 	cwt() (ceedub.wavelet.WaveletBasis method)

 	(in module ceedub.wavelet)

 	cwtfreq() (in module ceedub.wavelet)

D

 	
 	dj (ceedub.wavelet.WaveletBasis attribute)

 	
 	dt (ceedub.wavelet.WaveletBasis attribute)

E

 	
 	e_fold() (ceedub.wavelet.MorletWave method)

 	(ceedub.wavelet.PaulWave method)

F

 	
 	fourier_period() (ceedub.wavelet.MorletWave method)

 	(ceedub.wavelet.PaulWave method)

 	
 	freq() (ceedub.wavelet.MorletWave method)

 	(ceedub.wavelet.PaulWave method)

 	freqs (ceedub.wavelet.WaveletBasis attribute)

I

 	
 	icwt() (ceedub.wavelet.WaveletBasis method)

 	(in module ceedub.wavelet)

M

 	
 	M (ceedub.wavelet.WaveletBasis attribute)

 	
 	MorletWave (class in ceedub.wavelet)

N

 	
 	N (ceedub.wavelet.WaveletBasis attribute)

 	
 	nyquist_scale() (ceedub.wavelet.MorletWave method)

 	(ceedub.wavelet.PaulWave method)

P

 	
 	PaulWave (class in ceedub.wavelet)

S

 	
 	s0 (ceedub.wavelet.WaveletBasis attribute)

 	
 	scales (ceedub.wavelet.WaveletBasis attribute)

T

 	
 	time() (ceedub.wavelet.MorletWave method)

 	(ceedub.wavelet.PaulWave method)

 	
 	times (ceedub.wavelet.WaveletBasis attribute)

W

 	
 	wavelet (ceedub.wavelet.WaveletBasis attribute)

 	
 	WaveletBasis (class in ceedub.wavelet)

ceedub package

Submodules

ceedub.wavelet module

Continuous wavelet transform and support functions
based on Torrence and Compo 1998 (T&C)

(http://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf)

	
class ceedub.wavelet.MorletWave(w0=6)

	Bases: object

Morlet-Gabor wavelet: a Gaussian windowed sinusoid
w0 is the nondimensional frequency constant. This defines
the base frequency and width of the mother wavelet. For
small w0 the wavelets have non-zero mean. T&C set this to
6 by default.
If w0 is set to less than 5, the modified Morlet wavelet with
better low w0 behavior is used instead.

	
e_fold(s)

	The e-folding time for the Morlet wavelet.

	
fourier_period(s)

	The Fourier period of the Morlet wavelet with scale, s, given by:
P = 4*pi*s / (w0 + sqrt(2 + w0**2))

	
freq(w, s=1.0)

	Frequency domain representation of Morlet wavelet
Note that the complex Morlet wavelet is real in the frequency domain.
:param w: frequency
:param s: scale factor
:return psi: value of morlet wavelet at frequency, w

Note there is no support for modified Morlet wavelets. The
wavelets are defined by dimensionless frequency: y = w*s

	The standard Morlet wavelet is computed as:

	psi(y) = pi**-.25 * H(y) * exp((-(y-w0)**2) / 2)

	where H(y) is the Heaviside step function:

	H(y) = (y > 0) ? 1:0

	
nyquist_scale(dt=1)

	
	s0 corresponding to the Nyquist period of wavelet

	s0 = 2*dt * (w0 + sqrt(2 + w0**2)) / (4*pi)

for large w0 this is approximately dt*w0/pi

	
time(t, s=1.0)

	Time domain complex Morlet wavelet, centered at zero.

	Parameters:	
	t – time

	s – scale factor

	Return psi:	value of complex morlet wavelet at time, t

The wavelets are defined by dimensionless time: x = t/s

	For w0 >= 5, computes the standard Morlet wavelet:

	psi(x) = pi**-0.25 * exp(1j*w0*x) * exp(-0.5*(x**2))

	For w0 < 5, computes the modified Morlet wavelet:

	
	psi(x) = pi**-0.25 *

	(exp(1j*w0*x) - exp(-0.5*(x**2))) * exp(-0.5*(x**2))

	
class ceedub.wavelet.PaulWave(m=4)

	Bases: object

Paul wavelet of order m.
By definition m is an integer, however in this implementation
gamma functions are used in place of factorials, so non-integer
values of m won’t cause errors.

	
e_fold(s)

	The e-folding time for the Morlet wavelet.

	
fourier_period(s)

	The Fourier period of the Paul wavelet given by:
P = 4*pi*s / (2*m + 1)

	
freq(w, s=1.0)

	Frequency domain representation of Paul wavelet
Note that the complex Paul wavelet is real in the frequency domain.
:param w: frequency
:param s: scale factor
:returns psi: value of morlet wavelet at frequency, w

wavelets are defined by dimensionless frequency: y = w*s

	The Paul wavelet is computed as:

	psi(y) = 2**m / np.sqrt(m * (2*m-1)!) * H(y) * (y)**m * exp(-y)

	where H(y) is the Heaviside step function:

	H(y) = (y > 0) ? 1:0

	
nyquist_scale(dt=1)

	s0 corresponding to the Nyquist period of wavelet
s0 = 2*dt (2*m + 1)/(4*pi)

	
time(t, s=1.0)

	Time domain complex Paul wavelet, centered at zero.
:param t: time
:param s: scale factor
:returns psi: value of complex Paul wavelet at time, t

The wavelets are defined by dimensionless time: x = t/s

psi(x) = (2*1j)**m * m! / (pi*(2m)!) * (1 - 1j*x)**-(m+1)

	
class ceedub.wavelet.WaveletBasis(wavelet=None, N=None, dt=1, dj=0.0625)

	Bases: object

An object setting up a CWT basis for forward and inverse transforms
of data using the same sample rate and frequency scales. At
initialization given N, dt, and dj, the scales will be computed from
the _get_scales function based on the Nyquist period of the wavelet
and the length of the data.
See T&C section 3.f for more information about how scales are choosen.

	
M

	

	
N

	

	
cwt(tdat)

	Computes the continuous wavelet transform of tdat, using
the wavelet function and scales of the WaveletBasis, using FFT
convolution as in T&C. The FFT convolution is performed once
at each wavelet scale, determining the frequecny resolution of
the output.

	Parameters:	tdat – shape (N,) array of real, time domain data

	Returns:	wdat shape (M,N) array of complex, wavelet domain data.
M is the number of scales used in the transform, and N is
the length of the input time domain data.

	
dj

	

	
dt

	

	
freqs

	

	
icwt(wdat)

	Coputes the inverse continuous wavelet transform of wdat,
following T&C section 3.i. Uses the wavelet function and scales
of the parent WaveletBasis.

	Parameters:	wdat – shape (M,N) array of complex, wavelet domain data.
M is the number of frequency scales, and N is the number of
time samples.

	Returns:	tdat shape (N,) array of real, time domain data

	
s0

	

	
scales

	

	
times

	sample times of data

	
wavelet

	basis wavelet function

	
ceedub.wavelet.cwt(tdat, dt=1)

	Compute the continuous wavelet transform, using the default
WaveletBasis.
If you plan on doing several CWTs in the same basis you should
consider initializing a WaveletBasis object and using:
WaveletBasis.cwt.
:param tdat: shape (N,) array of real, time domain data
:param dt: sample cadence of data, needed for normalization

of transforms

	Returns:	wdat shape (M,N) array of complex, wavelet domain data.
M is the number of scales used in the transform, and N is
the length of the input time domain data.

	
ceedub.wavelet.cwtfreq(N, dt=1)

	Output the Fourier frequencies of the scales used in the default
WaveletBasis.

	Parameters:	
	N – number of time samples in the time domain data.

	dt – sample cadence of data

returns: shape (M,) array of frequencies

	
ceedub.wavelet.icwt(wdat, dt=1)

	Compute the inverse continuous wavelet transform, using the default
WaveletBasis.
If the forward transform was performed in a different basis, then this
function will give incorrect output!
If you plan on doing several ICWTs in the same basis you should seriously
consider initializing a WaveletBasis object and using:
WaveletBasis.cwt and WaveletBasis.icwt``.
:param wdat: shape (M,N) array of complex, wavelet domain data.

M is the number of frequency scales, and N is the number of
time samples.

	Returns:	tdat shape (N,) array of real, time domain data

Module contents

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to ceedub's documentation!

 		ceedub

 		Features

 		Credits

 		Installation

 		Stable release

 		From sources

 		Usage

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

 		History

 		0.1.0 (2017-09-19)

 		0.0.0 (2017-09-18)

_static/up-pressed.png

_static/down.png

_static/up.png

